If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10t^2=t
We move all terms to the left:
10t^2-(t)=0
We add all the numbers together, and all the variables
10t^2-1t=0
a = 10; b = -1; c = 0;
Δ = b2-4ac
Δ = -12-4·10·0
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-1}{2*10}=\frac{0}{20} =0 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+1}{2*10}=\frac{2}{20} =1/10 $
| 3x-23+9x=180 | | 3p+3/4=71/2 | | 12x-10=140 | | 2x-39=23x+27 | | v−7=9+12v−7=9+12. | | 12x-39=23x=27 | | 4x/9=95 | | 1/5x+1/3=3(4/5x-4) | | 10-x=223 | | x/68-54=72 | | 4x*9=95 | | 11x-23+41=360 | | z-5.94=1.43 | | x/68+54=72 | | Y=37+40/3y | | 4-9x=95 | | 3/4x^2-10x+6=1/x-1+1/8x^2-20x+12 | | y/19–13=-17 | | x+1.39=3.94 | | y19–13=-17 | | 227=8(s-60)+35 | | 8+2x=4x-10 | | y+10/13=4 | | y+1013=4 | | -5y+7(6y+5)=-1-7(-8-y) | | w-2.55=3.8 | | 4x-4=7x=2 | | 2x-2=x-36 | | -5y-7(-6y-4)=5-8-(4-y) | | 7x-10=8x- | | 6x²-12=5x²-4x | | -5y-7(-6y-4)=5-8-4-y) |